Former Fort Devens Army Installation Project Status Update 12 April 2018

Restoration Advisory Board Meeting

US Army Corps of Engineers BUILDING STRONG®

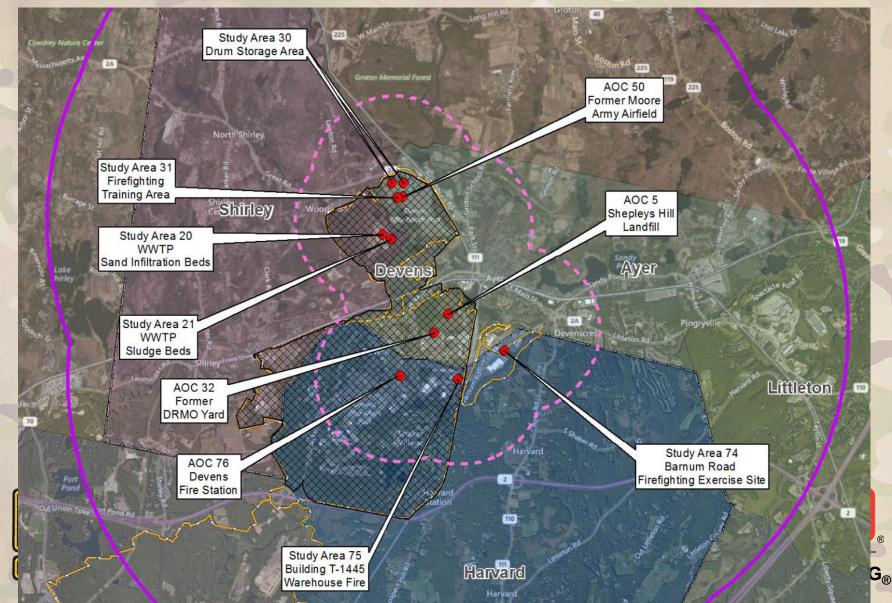
Agenda

- Per- and Polyfluoroalkyl Substances (PFAS)
 - Army sampling results update
 - Site Inspection (SI) data and report status
 - Additional sampling of Long-Term Monitoring (LTM) wells
 - Town of Ayer and Devens supply well sampling and operations update
 - Remedial Investigation (RI) planning

Background – PFAS

- Perfluorinated compounds are found in many household and commercial/industrial products
 - carpeting, water-proof clothing, rain gear, Teflon pans, food wrappers
 - metal plating operations
 - fire-fighting foams
- 2014 EPA identified perfluorooctane sulfonate (PFOS) and perflurorooctanoic acid (PFOA) as emerging contaminants
 - PFOS & PFOA most-widely produced PFAS compounds in U.S.
 - Adverse effects identified in laboratory animals
- 2016 EPA Lifetime Health Advisory (LHA) for PFOS & PFOA
 - LHA of 0.07 micrograms per liter (µg/L) (70 parts per trillion [ppt]) applies to PFOS and PFOA and the sum of PFOS and PFOA in drinking water
 - Many different types of PFAS compounds exist
 - Typically sample for either 6 or 14 of these compounds

Site Inspection Summary


- Sept 2016 Draft Preliminary Assessment (PA) report
- Sept 2016 Commence water supply well sampling in Ayer
- June 2017 SI sampling begins
 - Nine areas investigated as part of the SI
- Sept 2017 Draft SI report and final PA report
 - Draft SI recommended further investigation for AOCs 5, 32, 50, 30, 31, 20, 21, 74, and 75
 - Evaluation of source of PFAS in public water supply wells (MacPherson and Grove Pond) and evaluation if impacts to other water supplies
- Dec 2017/Jan 2018 Supplemental sampling of LTM wells
- Jan 2018 SI Addendum sampling at the Devens Fire Station
- April 2018 Draft SI Addendum report (fire station results) and LTM well data report

 Recommend further investigation for AOCs 43G, 57, and Devens Fire Station (AOC 76)

Site Inspection (SI) and SI Addendum Sampling Areas

SI Addendum Devens Fire Station

- Field work conducted in January 2018
- Soil and groundwater samples collected from 9 locations around the Devens Fire Station (AOC 76)
- Six locations had PFOS and/or PFOA detected at or above the EPA LHA (70 ppt) in groundwater
 - Maximum groundwater concentration of 4,160 ppt in surface swale adjacent to Fire Station

Analyte	FH-17-09_GW012318
	1/23/2018
PFBS	18
PFHpA	130
PFHxS	780
PFNA	19
PFOS	4000
PFOA	160
PFOS + PFOA	4160
	W/VO

Jackson

Analyte	H-17-08_GW012218
	1/23/2018
PFBS	4.3
PFHpA	41
PFHxS	49
PFNA	45
PFOS	1500
PFOA	21
PFOS + PFOA	1521

Devens

Fire

		~	1000
24			- NO
SL	at	IOP	1. W
		101	N

11	K	1
ESE		C P
		Barnun Rd
	Analyte	EH-17-06 GW012318

Analyte	H-17-06_GW012318 1/23/2018				
PFBS	13				
PFHpA	9.1				
PFHxS	31				
PFNA	2.6				
PFOS	42				
PFOA	30				
PFOS + PFOA	72				
All and a second	10				

Analyte	FH-17-07_GW012318		
	1/23/2018		
PFBS	3.0		
PFHpA	4.1		
PFHxS	16		
PFNA	0.55 J		
PFOS	13		
PFOA	11		
PFOS + PFOA	24		

18		PFOA PFOS +
1942 8 4	Analyte	FH-17-02_GW012218
		1/22/2018
- P	PFBS	20
Constant of	PFHpA	4.0
	PFHxS	170
and the second	PFNA	1.6 U
Territor	PFOS	5.3
A State Property in	PFOA	23
	PFOS + PFOA	28.3

FH-17-05_GW012218 1/22/2018

9.5

14 140

1.2 J

46

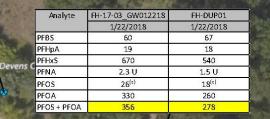
34

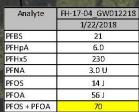
80

Analyte

PFBS PFHpA

PFHxS PFNA


PFOS


PFOA

PFOS + PFOA

tesonad

Analyte	H-17-01_GW012218	
	1/22/2018	
PFBS	7.7	
PFHpA	2.1 J	
PFHxS	110	
PFNA	1.8 U	
PFOS	3.7 U	
PFOA	9.2	
PFOS + PFOA	9.2	1

ENGLAN

SI and SI Addendum Conclusions

- PFAS detected in groundwater and soil at several sites
- Recommend that a Remedial Investigation (RI) be conducted to further investigate PFAS contamination
 - ► AOCs 20, 21, 30, 31, 50 at the former North Post
 - AOCs 74, 75 along Barnum Road
 - ► AOCs 5, 32, 76 at the former Main Post
 - Evaluation of source of PFAS in public water supply well systems (Macpherson and Grove Pond) and evaluation if impacts to other water supplies

PFAS Sampling of Select LTM Wells

- Additional PFAS samples were collected from 29 existing LTM monitoring wells and 1 surface water location in Dec. 2017/Jan. 2018
- Included AOCs previously evaluated as part of the SI
 - ► AOC 5 (SHL)
 - ► AOC 32 (DRMO)
 - AOC 50 (airfield)
- Included AOCs not previously sampled for PFAS
 - AOC 43J (former gas station/motor pool)
 - AOC 43G (former gas station)
 - AOC 57 (Building 3713 Fuel Oil Spill, vehicle maintenance area)

PFAS Results at Select LTM Wells

- AOC 43J
 - 4 wells sampled, maximum PFOA+PFOS = 11 ppt
- AOC 43G
 - 2 wells sampled, maximum PFOA+PFOS = 123 ppt
 - AOC 43G will be included in the RI
- AOC 57
 - 6 wells sampled, maximum groundwater PFOA+PFOS = 125 ppt
 - 1 surface water sample, PFOA+PFOS = 25 ppt
 - AOC 57 will be included in the RI
- AOC 5, AOC 32, AOC 50 are already planned to be included in the RI (data were collected to provide more information)

Public Supply Wells PFAS Sampling

- Ongoing quarterly sampling of public water supply wells since Sept.
 2016
 - Grove Pond wellfield (Ayer)
 - MacPherson well (Devens)
- Results drinking water below LHA
- On March 1, MassDEP issued letters to Ayer and Devens indicating that out of an abundance of caution MassDEP has summed 5 PFAS compounds and compared to 70 ppt and recommended concentrations in drinking water be reduced.
 - Using the five compounds (PFOS, PFOA, PFNA, PFHxS, and PFHpA), the drinking waters at the Grove Pond wellfield and MacPherson well exceeded 70 ppt.
- Ayer and Devens changed operations and issued public notices

U

Public Supply Well PFAS Data

Location	Well ID	Date	PFOS (ug/L)	PFOA (ug/L)	PFOS+PFOA (µg/L)	MassDEP Draft Policy (µg/L)
		10/17/2017	0.038	0.016	0.054	0.098
	Ayer Multi-Finished 4 Grove	1/9/2018	0.032	0.015	0.047	0.085
		3/7/2018 ⁺	0.007	0.008	0.015	0.025
	Washington Street Storage Tank	1/9/2018	0.020	0.012	0.032	0.060
	Pingry Hill Storage Tank	1/9/2018	0.009	0.009	0.018	0.032
	Arrest BW/ OCC//CW/ C	10/17/2017	< 0.004	0.008	0.008	0.019
	Ayer RW-06G/GW 6	1/9/2018	< 0.004	0.007	0.007	0.016
Ayer Wells	Arrest DW/ 07(1/CW/ 7	10/17/2017	0.014	0.014	0.028	0.059
Ayer wens	Ayer RW-07G/GW 7	1/9/2018	0.012	0.016	0.028	0.056
	Arrow DW/ 0972773W/ 9*	10/17/2017	0.091	0.023	0.114	0.177
	Ayer RW-08G/GW 8*	1/9/2018	0.066	0.027	0.093	0.168
	Ayer Grove Pond Well 1	2/8/2018	< 0.004	0.007	0.007	0.017
	Ayer Grove Pond Well 1	2/12/2018	0.017	0.008	0.025	0.031
	Spectacle Pond Well 1A	3/1/2018	0.007	0.006	0.013	0.017
	Spectacle Pond Well 2A	3/1/2018	0.006	0.008	0.014	0.021
·	Spectacle Pond Finished	3/1/2018	0.007	0.007	0.014	0.022
Devens Wells	MacPherson Well 03G	9/19/2017	0.040	0.021	0.061	0.1311
		12/19/2017	0.040	0.022	0.062	0.134
	Patton Well 05G	9/1/2016	< 0.004	0.004	0.004	0.011
		9/1/2016	0.004	0.004	0.008	0.021
	Shabokin Well 06G	4/12/2017	0.004	0.007	0.011	

Shaded data cell indicates an exceedance of the USEPA Lifetime Health Advisory (0.070 µg/L)

MassDEP draft policy is the sum of PFOS, PFOA, PFNA, PFHxS, and PFHpA (0.070 µg/L), identitied March 1, 2018

+ = sample collected after operational change implemented

* taken out of service on February 26, 2018

Public Supply Wells Operations

- MacPherson water supply well (Devens) was taken out of service on February 27
- Grove Pond Wellfield (Ayer)
 - Drinking water was below LHA
 - Operations were revised
 - Well #8 was taken out of service on February 26
 - Well #1 was brought on-line
 - March 2018 sampling indicates drinking water is currently below 70 ppt for the sum of the 5 PFAS compounds
 - Town of Ayer is evaluating treatment options at the Grove Pond wellfield

Next Steps

- PFAS Remedial Investigation, next step in the CERCLA process after the SI
- Ongoing planning of the RI Work Plan
 - Subdivided sites into areas to expedite work plan and field work
 - Area 1 Grove Pond wellfield, MacPherson water supply well, AOC 57, AOC 74, AOC 75
 - ► Area 2 AOC 5, AOC 32, AOC 43G, AOC 76
 - ► Area 3 AOC 20, AOC 21, AOC 50, AOC 30, AOC 31
 - Comprehensive public and private well inventory and sampling if a migration pathway is present
- Schedule work plan approval and commence field work, summer 2018

AOC 30 - Drum Storage Area

AOC 50 - Former Moore Airfield

AOC 31 - Firefighting Training Area

AOC 20 - WWTP Sand Infiltration Beds

MacPherson - MacPherson Well

AOC 5 - Shepleys Hill Landfill

Grove Pond - Grove Pond Supply Wells

AOC 32 - Former DRMO Yard

AOC 74 - Barnum Road Firefighting Excercise Site

AOC 75 - Building T-1445 Warehouse Fire

AOC 76 - Devens Fire Station

AOC 57 - Former Military Vehicle Storage/Maintenance Yard

AOC 43G - Former AAFES Gas Station

PFAS RI Areas of Investigation

Area 1 = yellow

Area 2 = red

Area 3 = blue

BUILDING STRONG_®

Former Fort Devens Army Installation Project Status Updates

Questions?

BUILDING STRONG®